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We consider the finite-amplitude instability of incompressible spherical Couette
flow between two concentric spheres of radii R1 and R2 (>R1) in the narrow-
gap limit, ε ≡ (R2 − R1)/R1 � 1, caused by rotating them both about a common
axis with distinct angular velocities Ω1 and Ω2 respectively. In this limit it is
well-known that the onset of (global) linear instability is manifested by Taylor
vortices of roughly square cross-section close to the equator. According to linear
theory this occurs at a critical Taylor number Tcrit which, remarkably, exceeds
the local value Tc obtained by approximating the spheres as cylinders in the
vicinity of the equator even as ε ↓ 0. Previous theoretical work on this problem
has concentrated on the case of almost co-rotation with δ ≈ (Ω1 − Ω2)/Ω1 =O(ε1/2)
for which Tcrit = Tc +O(δ2) +O(ε). In this limit the amplitude equation that governs
the spatio-temporal modulation of the vortices on the latitudinal extent O(ε1/2R1)
gives rise to an interesting bifurcation sequence. In particular, the appearance of
global bifurcations heralds the onset of complicated subcritical time-dependent finite-
amplitude solutions.

Here we switch attention to the case when ε1/2 � δ � 1. We show that for Taylor
numbers T = Tc+O((δε)2/3) there exists a locally unstable region of width O((δε)1/3R1)
within which the amplitude equation admits solutions in the form of pulse-trains. Each
pulse oscillates at a frequency proportional to its distance from the equatorial plane
and consists of a wave propagating towards the equator under an envelope. The pulse
drifts at a slow speed (relative to the wave velocity) proportional to its distance (and
away) from the equator. Both the wavelength and the envelope width possess the
same relatively short length scale O((ε2/δ)1/3R1). The appropriate theory of spatially
periodic pulse-trains is developed and numerical solutions found. Significantly, these
solutions are strongly subcritical and have the property that T → Tc as ε ↓ 0.

Two particular limits of our theory are examined. In the first, ε1/2 � δ � 1, the
spheres almost co-rotate and the pulse drift velocity is negligible. A comparison
is made of the pulse-train predictions with previously obtained numerical results
pertaining to large (but finite) values of δ/ε1/2. The agreement is excellent, despite the
complicated long-time behaviour caused by inhomogeneity across the relatively wide
unstable region.

Our second special case δ =1 relates to the situation when the outer sphere is
at rest. Now the poleward drift of the pulses leads to a slow but exponential
increase of their separation with time. This systematic pulse movement, over and
above the spatial inhomogeneity just mentioned, necessarily leads to complicated
and presumably chaotic spatio-temporal behaviour across the wide unstable region
of width O(ε1/3R1) on its associated time scale, which is O(ε−1/3) longer than the
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wave period. In view of the several length and time scales involved only qualitative
comparison with experimental results is feasible. Nevertheless, the pulse-train structure
is robust and likely to provide the building block of the ensuing complex dynamics.

1. Introduction
Our study concerns the motion of incompressible viscous fluid confined between

concentric spheres of radii R1 and R2 (>R1) in the narrow gap limit,

ε ≡ (R2 − R1)/R1 � 1, (1.1)

caused by rotating them both about a common axis with distinct angular velocities
Ω1 and Ω2 respectively. Unlike classical Couette flow between concentric cylinders,
which consists of pure azimuthal motion, spherical Couette flow exhibits a secondary
axisymmetric meridional circulation induced as a consequence of the spherical
geometry. In most experiments the outer sphere is at rest (Ω2 = 0) and so many
of the numerical investigations have focused on that case. Studies have shown that
the bifurcation sequence that ensues depends on the gap aspect ratio ε and, at
least for the case of the stationary outer sphere, the experiments highlight three
parameter regimes – these can be loosely classified as narrow (ε < 0.12), medium
(0.12 <ε < 0.24) and wide (ε > 0.24) gap geometries. For narrow to medium-sized
gaps the undisturbed flow first becomes susceptible to axisymmetric vortices; these
are analogous to the familiar Taylor vortices which occur in the cylindrical geometry.
The vortices form in the vicinity of the equator of the spherical system – in some cases
the cells have been observed to be symmetric with respect to the equatorial plane
while in other circumstances they are asymmetric (see, for example, Bühler 1990).
The numerical results of Marcus & Tuckerman (1987a, b), who largely focus their
attention on the medium-gap case, indicate that even the transitions between the basic
state and alternative steady states may be very complicated. Further bifurcations may
lead to time-dependent structures, either axisymmetric (see, for example, Bartels
1988; Mamum & Tuckerman 1995) or non-axisymmetric (Nakagayashi 1983).
Experimental studies (Nakagayashi 1983; Nakagayashi & Tsuchida 1988a, b) for
ε =0.14 demonstrate that the non-axisymmetric flow consists of spiral vortices. These
have also been identified in numerical results for the same gap width by Sha &
Nakagayashi (2001) and in the narrow gap (ε = 0.06) by Dumas & Leonard (1994).

Wimmer (1976, 1981) describes experimental results for a variety of gap widths
in the range 0.0063 � ε � 0.6. His findings for the narrow-gap limit show that, at
the onset of instability, axisymmetric Taylor vortices with their roughly square cross-
section are localized in the vicinity of the equator. Such a configuration may be
analysed by multiple-scale asymptotic methods, based on the idea that the structure
of each vortex on its short O(εR1) length scale is determined by conditions locally
whereas its amplitude varies over a longer latitudinal length scale fixed by a higher-
order theory. The early studies of Walton (1978), Hocking & Skiepko (1981) and
Hocking (1981) assumed that the critical Taylor number Tcrit is simply a perturbation
of the value Tc obtained by approximating the equatorial shellular region by infinite
cylinders. Thus ‘local instability’ occurs when the Taylor number T exceeds Tc, whereas
for ‘global instability’ it is necessary that T >Tcrit. However, once the effects of the
spatial modulation are correctly accounted for, Soward & Jones (1983) have shown
that Tcrit > Tc. This distinction between ‘local’ and ‘global instability’ is well-known in
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the context of spatially evolving shear flows (see, for example, Huerre & Monkewitz
1990).

There are two important physical ingredients involved in the latitudinal modulation
of the vortices. One is boundary curvature, while the other is the secondary meridional
circulation present in the basic state (the primary flow being azimuthal). Both lead to
the physical mechanism of phase mixing (a name adopted in astrophysical contexts;
see, for instance, Heyvaerts & Priest 1983), which tends to shorten length scales and
so enhance dissipation. This stabilizing process is so potent that it causes the true
critical (or global) Taylor number Tcrit to exceed the local cylinder value Tc in the
limit ε ↓ 0 (Soward & Jones 1983) as mentioned above.

Harris, Bassom & Soward (2000) extended the Soward & Jones (1983) linear
analysis for axisymmetric Taylor vortices into the weakly nonlinear regime by
including the Stuart–Landau term as derived by Davey (1962). To appreciate the
nature of the asymptotic method we recap briefly the notation employed previously
by both Soward & Jones (1983) and Harris et al. (2000). The relative sizes of the
angular velocities and angular momenta of the two boundaries are measured by

µ̃ ≡ Ω2/Ω1, δ̃ ≡ (1 − µ̃)/(1 + µ̃), (1.2a, b)

and

µ ≡ R2
2Ω2

/
R2

1Ω1, δ ≡ (1 − µ)/(1 + µ), (1.2c, d)

respectively. Scaled Reynolds and Taylor numbers are introduced according to

RM ≡ ε2(1 − µ)R2
1Ω1

/
ν, T ≡ ε−1

(
1 + 1

2
ε
)−3

δ−1R2
M, (1.3a, b)

where ν denotes the kinematic viscosity of the fluid.
The Soward & Jones (1983) theory places no restriction on the angular momentum

ratio µ. However to construct their amplitude equation (see Appendix C), Harris et al.
(2000, 2003) were obliged to restrict attention to the case of small δ which means that
the angular momentum ratio is close to unity and for instability the spheres need to
rotate extremely fast. As these papers explained, this is not a parameter range readily
accessed by experiment. Their theory, like ours here, could be extended to encompass
non-axisymmetric modes, which would be relevant, for example, to the spiral vortices.
For O(1) azimuthal wavenumber, however, no new terms are introduced at the levels
of approximation considered and so these small asymmetries do not influence their
conclusions at leading order. In this paper we wish to investigate axisymmetric finite-
amplitude instability within the framework of finite δ. Indeed, our analysis will be
valid for the important case when the outer sphere is at rest so that δ = 1.

With regard to the onset of instability, we have already explained why the global
critical Taylor number Tcrit exceeds the local cylinder critical value Tc and, in terms
of order of magnitude, these are related by

Tcrit = Tc +O(δ2) +O(ε). (1.4)

For δ � O(ε1/2) there is a region of local instability of breadth O(δR1) about
the equator. Significantly, the critical linear marginal mode has width O(ε1/2R1)
independent of the size of δ. So though the mode fills the locally unstable region
when δ =O(ε1/2) it is much thinner when δ � ε1/2 leaving no disturbance throughout
the remaining bulk of the region (see (4.8) and (4.10)). This is an unnatural feature
that the nonlinear theory needs to address.

The comparability in the sizes of the correction terms in (1.4) suggested to
Harris et al. (2000) the importance of the parameter range δ =O(ε1/2), for which
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their O(δ/ε1/2) parameter κ̃ (see equation (C1b)) is O(1). For this parameter range
Harris et al. (2003, henceforth referred to as HBS) traced complicated bifurcation
sequences, which in all cases led via global bifurcations to travelling waves. Indeed, for
numerically large values of κ̃ highly subcritical finite-amplitude states were identified,
suggesting that they may exist in small-amplitude form for

T = Tc +O
(
(δε)2/3

)
(1.5)

close to the local cylinder critical value Tc, in the sense that T → Tc (while Tcrit →
Tc +O(δ2)) as ε ↓ 0.

In this respect an interesting comparison can be made with a related problem of
thermal convection in a rotating self-gravitating sphere. That problem also exhibits
the destructive effects of phase mixing with the consequence that the global critical
Rayleigh number exceeds the local critical Rayleigh number (Jones, Soward &
Mussa 2000). Previously, however, Soward (1977) proposed that nonlinearity could
counterbalance the phase mixing and so permit small finite-amplitude motion close
to the local critical value, just as in the suggestion (1.5). He uncovered localized
solutions, which we will call pulses. The possibility of corresponding isolated pulse
solutions for the spherical Couette flow problem at Taylor numbers close to the
local critical value Tc was first investigated by Hocking (private communication, circa
1980) but he was unable to identify any such features. Ewen & Soward (1994a) sought
localized pulse solutions for an amplitude equation which, although more general than
the one of concern here, did include our fundamental Complex–Ginzberg–Landau
equation (2.17) (see also (2.22)) as a special case. The form of their solutions supported
Hocking’s conclusion that no localized pulses could exist for the spherical Couette
problem close to Tc. In view of this negative result Ewen & Soward (1994b) proceeded
to investigate pulse-trains for their more general system without considering the
spherical Couette case – as this flow did not allow isolated pulses it was natural to
conclude that pulse-trains were also unfeasible. In contrast, some recent simulations
reported by HBS for numerically large values of δ/ε1/2 suggest that pulse-train
solutions might exist after all. An exploration of this possibility is the main objective
for this paper.

We outline briefly the nature of the pulse-train solutions suggested by HBS’s
results in the limit ε1/2 � δ � 1. To begin, the Taylor number T must be of size
(1.5) and then there is a locally unstable region centred on the equator and of width
O((δε)1/3R1). Inside this zone there are O((δ2/ε)1/3) individual pulses each of extent
O((ε2/δ)1/3R1). Each pulse oscillates in time at a frequency proportional to the distance
R1|θ | between its centre and the equator (here −θ denotes the latitude of the pulse).
The centres remain almost stationary and are separated by the same O((ε2/δ)1/3R1)
distance. As a consequence, the frequency increment O((δ/ε2)2/3(ν/R2

1)) between any
two neighbouring pulses is the same and this enables each pulse to interact coherently
with its neighbours. The spatial structure of each pulse is similar and is characterized
by a wave with wavelength of the same size as its pulse envelope. In view of the
spatial linear increase of the temporal frequency, the envelope wave travels towards
the equator at a phase speed O((δ/ε2)2/3|θ |ν/R1). Notice that the narrower O(εR1)
width of the vortices means that they drift towards the equator at the slower true
phase speed O((δ/ε)|θ |ν/R1). Energy propagates away from the equator at the group
velocity, which is also linear in |θ | and has exactly the same order of magnitude. This
causes the pulse centres to separate uniformly on the time scale O((ε/δ)(R2

1/ν)) which
is long compared with the frequency increment time scale O((ε2/δ)2/3(R2

1/ν)).
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The picture just described is essentially spatially uniform and as such is the lowest-
order solution on the pulse-train length scale O((ε2/δ)1/3R1). The background on
which the pulses ride is inhomogeneous on the longer length scale O((δε)1/3R1) of
the unstable region. Indeed, because of this inhomogeneity, the pulse-train solutions
found by HBS for numerically large values of δ/ε1/2 exhibit complicated temporal
behaviour over a longer time scale. For certain parameter values HBS identified
a long-time beating frequency but we shall not address such issues in this paper.
Rather, we simply construct localized pulse-train solutions and then merely speculate
on how this low-order structure fits into the complete picture. Our numerical evidence
suggests that the structures are robust and provide the building blocks for the realized
solutions which without doubt exhibit complex spatio-temporal behaviour on long
length and time scales.

We have stressed the small-δ limit of almost co-rotation because we can make
comparisons with the comprehensive findings of HBS, who ignored the role of the
small but finite group velocity. Nevertheless our pulse-train theory together with our
order-of-magnitude estimates continue to apply even when δ = 1 which corresponds
to the outer sphere being at rest. For O(1) values of δ the continual increase of the
pulse separation provides a further temporal non-uniformity.

There is continuing interest in nonlinear frequency selection mechanisms when the
background state is slowly varying spatially, as it is for our spherical Couette flow
problem. These problems are generally characterized by a single frequency, whose
value follows after the solution of a nonlinear eigensystem. Pier, Huerre & Chomaz
(2001) discuss two types of localized mode that they denote soft and steep global
modes. Whereas the amplitude of the soft mode evaporates smoothly at each end, the
steep mode terminates abruptly at one end, where the finite-amplitude state collapses
across a front (Pier et al. 1998). Such solutions have been identified in a variety of
physical systems (Meunier et al. 1997; Pier & Huerre 2001; Pier 2002). For them
the role of the group velocity is vital in the frequency selection process (Couairon &
Chomaz 1997; Tobias, Proctor & Knobloch 1998) and is related to the Dee & Langer
(1983) criterion, which requires the group velocity to be directed into the mode across
the front. Each of our pulses drifts at the group velocity away from the equator and,
since there is no relative velocity, is thus more like a soft mode. Nevertheless, our
pulse-train itself must terminate abruptly sufficiently far from the equator, where local
conditions can no longer support the finite-amplitude state. There the final pulse in
the train is followed by the zero-amplitude state and so, though frontal in appearance,
this is not a genuine front in the steep mode sense. Importantly, each pulse has a
distinct frequency and so the pulse-train is a generalization of the single pulse notion
considered by the aforementioned authors. We stress these related ideas because we
believe that in the spherical Couette flow problem frequency selection is essentially a
local criterion, although it is rendered discrete by the necessity of filling the locally
unstable region with pulses possessing resonating frequencies.

The remainder of our paper is organized as follows. In § 2 we recap the derivation
of the amplitude equation, which governs the modulation of the complex amplitude
of the Taylor vortices, from the partial differential equations for the spherical Couette
flow system. We make a locally homogeneous approximation, which is valid on
an intermediate length scale large compared to the pulse width O((ε2/δ)1/3R1) but
short compared to the O((δε)1/3R1) extent of the locally unstable region. This allows
identification of the structure of the pulse-train solution within the ensuing simplified
system. Spatio-temporally periodic solutions are found in § 3 and these have an
elegant structure which is best addressed numerically using a Fourier series in space
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and solving an initial value problem in time. The ensuing temporally periodic solutions
are linked to a Fourier series in time (Appendix A), which defines the pulse structure;
the link is effected by Fourier transforms (Appendix B). In § 4 we consider our two
limiting cases and, first, in § 4.1, investigate the limit ε1/2 � δ � 1 of almost co-rotation.
We compare our results with computations by HBS pertaining to large values of
δ/ε1/2. Both quantitative and qualitative comparisons are excellent and fully support
the estimates that we made above. The agreement provides reassuring evidence that
the pulse-trains can be modulated and so fill the complete locally unstable region
albeit with complicated and possibly chaotic long-time behaviour. Though the pulse-
train theory still applies when the outer sphere is at rest (δ = 1), the long-time theory
now involves the additional complication of the small poleward group velocity. This
means that the pulses are no longer stationary but drift apart away from the equator.
Since the systematic slow separation is the same for all adjacent pulse pairs we are
able to show in § 4.2 that our pulse-trains can be embedded within a temporally
uniformly valid approximation. In the final discussion in § 5 we comment on the
spatio-temporal behaviour of the actual Taylor vortices as predicted by our solutions
and examine the extent to which our findings are supported by experiments and
numerical simulations. We provide an alternative survey of our work in a summary
article (Soward & Bassom 2003).

2. The governing equations
We follow the formulation adopted by Soward & Jones (1983) in which the

governing equations are made dimensionless by using R1 for the unit of length and
ε2R2

1/ν as the unit of time. In consequence, the phase and group velocity of waves are
measured in terms of ε−2ν/R1 which should be contrasted with R1Ω1, the adopted unit
of fluid velocity. The system is referred to spherical polar coordinates (r, π/2 + θ, φ),
where −θ is the latitude and θ = 0 is the equator. Relative to our spherical polar
coordinates we write

u ≡ 1

r cos θ

(
RMε

r

∂ψ

∂θ
, −RM

∂ψ

∂z
, h

)
, r ≡ 1 + εz, (2.1a, b)

where the inner sphere boundary is z =0 and the outer is z = 1. Our solution

ψ = Ψ + ψ̂, h = H + δĥ (2.2a, b)

is then composed of the basic flow (Ψ, H ) and a perturbation (ψ̂, δĥ) to it.
The basic steady flow is given correct to leading order by

Ψ ≈ (1 + µ̃) sin 2θ cos θ F (z), H ≈ (1 + µ̃) cos2θ G(z), (2.3a, b)

where

F (z) =
1 − µ̃

5! (1 − µ)
z2(1 − z)2

[
5
2

− δ̃
(
z − 1

2

)
+ O(ε)

]
(2.3c)

and

G(z) = 1
2

− δ̃
(
z − 1

2

)
+ O(ε). (2.3d)

From the definitions (1.2) we note

(1 − µ̃)/(1 − µ) = 1 + O(ε/δ), δ̃ = δ + O(ε) (2.4a, b)
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and, since we are interested in the limit δ � ε1/2, we assume that these two quantities
take the values unity and δ respectively in our applications. We will also ignore the
O(ε) error terms in the representations (2.3c, d) of F (z) and G(z).

We consider perturbations to our basic state which are given locally by[
ψ̂

ĥ

]
=

[
− if (z)

g(z)

]
exp

[
i

(∫
k

ε
dθ − ωτ

)]
, (2.5)

where τ is the time. Correct to lowest order the functions f (z) and g(z) satisfy the
equations

(D2 − k2 + iω)(D2 − k2) f + ikT sin 2θ [F ′(D2 − k2) − F ′′′] f

+ [2i sin θ (GD + G′) − 2kG cos θ] g = 0, (2.6a)

(D2 − k2 + iω) g + ikT F ′ sin 2θ g − kδ−1T G′ cos θ f = 0 (2.6b)

and boundary conditions

f = Df = g = 0 at z = 0 and z = 1, (2.7)

where both the prime and D denote differentiation with respect to z. The solution of
this eigenvalue problem determines a dispersion relation

ω = ω(θ, k, T ) (2.8)

which we shall later solve numerically. The formulation here is entirely equivalent to
(2.15) and (2.16) of Soward & Jones (1983) which itself generalizes (4.1) and (4.2) of
Walton’s (1978) δ = 1 case.

2.1. Local structure

We introduce the local critical Taylor number Tl(θl), frequency ω = ωl(θl) and
wavenumber k = kl(θl) at latitude −θl , which are all real, satisfy (2.8) and are chosen
to minimize T . These local values are characterized by a real group velocity

Im {[ω,k]l} = 0, (2.9)

where the subscript notation , • denotes the partial derivative with respect to •. The
minimum value of Tl occurs on the equator where it determines the local critical
cylinder values

Tc = Tl(0), ωc = ωl(0) = 0, kc = kl(0), θc = θl =0; (2.10)

the subscript c, for local values at θl =0, is used to stress the cylinder nature of the
approximation. Moreover, at the equator the phase mixing is real and so

Im {[ω,θ ]c} = 0. (2.11)

Since we are only concerned with the behaviour of the solution near the equator where
|θl | � 1 we can expand ωl ≡ ω(θl, kl, Tl) as a Taylor series about the local minimum
value ωc ≡ ω(θc, kc, Tc). Equating the real and imaginary parts determines

ωl = [ω,θ ]c θl + [ω,θk]c θl (kl − kc) + . . . (2.12a)

and

−[ω,T ]c (Tl − Tc) = 1
2

{
[ω,θθ ]c θ2

l + [ω,kk]c (kl − kc)
2
}

+ . . . , (2.12b)
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respectively. Likewise the vanishing of the imaginary part of the group velocity [ω,k]l
yields

−[ω,kT ]c (Tl − Tc) = [ω,kk]c (kl − kc) + . . . (2.12c)

so that, correct to lowest order, we have

kl = kc + O
(
θ2
l

)
, ωl = [ω,θ ]c θl + O

(
θ3
l

)
, (2.13a, b)

−[ω,T ]c (Tl − Tc) = 1
2
[ω,θθ ]c θ2

l + O
(
θ4
l

)
, (2.13c)

in which [ω,θθ ]c/[ω,T ]c is real and negative. From (2.13a, b) we determine the local
phase velocity

cp ≡ ω/k ≈ {[ω,θ ]c/kc} θl. (2.13d)

To leading orders the other key partial derivatives required by our theory are

cg ≡ [ω,k]l ≈ [ω,θk]c θl, [ω,T ]l ≈ [ω,T ]c, (2.14a, b)

[ω,θ ]l ≈ [ω,θ ]c, [ω,kk]l ≈ [ω,kk]c, (2.14c, d)

where cg is the local group velocity and both − i[ω,T ]c and i[ω,kk]c are real and
positive. It should be remarked however that although − i[ω,T ]l , [ω,θ ]l and i[ω,kk]l
are all real at lowest order, they are fully complex when θl 	= 0 and neglected smaller
terms are taken into account.

Our objective is to show that weakly nonlinear solutions exist in the form of
localized pulses which can combine to form pulse-trains. Each pulse is localized on a
length scale O(ε2/3) and oscillates at a different frequency to its neighbour, while the
pulse-trains exist on a wider region width O(ε1/3). It is possible to discuss the form of
these pulse-trains in the vicinity of some location θ = θl =O(ε1/3) on an intermediate
length scale which is large compared to O(ε2/3) but short compared to O(ε1/3). To
that end we consider solutions in the vicinity of θl with the structure[

ψ̂

ĥ

]
= b(θ − θl, τ )

[
− ifl(z)

gl(z)

]
exp

{
i

[
kl(θ − θl)

ε
− ωlτ

]}
+ c.c., (2.15)

where c.c. denotes complex conjugate and (fl(z), gl(z)) is the solution of the eigenvalue
problem (2.6) with the local critical values Tl , ωl , kl at θl . Application of standard
multiple-scale methods shows that b(θ − θl, τ ) is governed by

∂b

∂τ
+ ε [ω,k]l

∂b

∂θ
= {−i [ω,T ]l(T − Tl) − i [ω,θ ]l(θ − θl) − C|b|2}b + 1

2
i ε2 [ω,kk]l

∂2b

∂θ2
,

(2.16)

where C is a real constant determined by weakly nonlinear theory, but, of course, in
part depends on the normalization of the local eigenfunctions (fl(z), gl(z)).

Adopting the lowest-order approximations for the partial derivatives, (2.16) may
be cast in the dimensionless form

∂A
∂t

+ c
∂A
∂χ

= (λ + iχ − |A|2)A +
∂2A
∂χ2

(2.17)

under the change of variables

τ =
t(

−[ω,θ ]c µ ε2/3
) , θ − θl = µ ε2/3χ, θl =

µ2 ε1/3

γ
Θl, (2.18a, b, c)
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c =
cg(

−[ω,θ ]c µ2 ε1/3
) =

[ω,kθ ]c
(−[ω,θ ]c γ )

Θl, (2.18d)

λ=
(−i [ω,T ]c)(

−[ω,θ ]c µ ε2/3
) (T − Tc) − Θ2

l ,
√

C b = (−[ω,θ ]c µ)1/2 ε1/3 A, (2.18e, f )

where

γ ≡ {−[ω,kk]c[ω,θθ ]c}1/2

(−2 [ω,θ ]c)
(> 0), µ ≡

{
i [ω,kk]c

−2 [ω,θ ]c

}1/3

(> 0). (2.19a, b)

An alternative representation θl = µε2/3χl is sometimes helpful with relations

θ = µ ε2/3 (χl + χ), Θl = Υε χl, Υε = ε1/3 γ /µ. (2.20a, b, c)

An equation similar to (2.17) was considered by Couairon & Chomaz (1999), but
with iχ replaced by χ . The absence of the i is, however, crucial and leads to solutions
with very different properties. A further reduction of (2.17) is obtained by adopting
the coordinate moving at the group velocity c and making the additional change of
variables

A(χ, t; ϕ, t0) = exp
[
i
(

1
2
ct2 + Ωt + ϕ

)]
a(x, t − t0), (2.21a)

where

x = χ − Ω − ct. (2.21b)

Here t0 is an arbitrary time origin (included for later convenience), while ϕ is an
arbitrary real phase. The arbitrary real frequency Ω can be set to zero under the shift
of the local origin θl → θl + µε2/3Ω , and then (2.17) is satisfied when a(x, t) solves

∂a

∂t
= (λ + ix − |a|2)a +

∂2a

∂x2
. (2.22)

2.2. Symmetries

Numerical investigations of initial value problems showed that a family of stable
finite-amplitude pulse-train solutions of (2.22) exists with the structure

a(x, t; L) = eiπ/4
∑

∀n

exp
[
i
(
2n + 1

2

)
Lt

]
a
(
x −

(
2n + 1

2

)
L

)
+ e−iπ/4

∑
∀n

exp
[
−i

(
2n + 1

2

)
Lt

]
a
(
x +

(
2n + 1

2

)
L

)
, (2.23a)

parameterized by the constant L which measures the distance between the pulses. By
an appropriate choice of the phase ϕ in our representation (2.21), we may restrict
attention to the complex function a(x), which has the symmetry property

a(−x) = a∗(x), (2.23b)

where the asterisk denotes complex conjugate. Such solutions exist over a finite range
Lmin(λ) � L � Lmax(λ), which depends on λ, provided that λ> λinf where

Lmin(λinf ) = Lmax(λinf ) ≡ Linf . (2.24a)

Our numerical simulations show that

λinf ≈ 2.54074 with a corresponding Linf ≈ 2.11831. (2.24b)
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On substitution of (2.23a) into (2.22) we find that a(x) satisfies the equation

d2a

dx2
+ (λ + ix) a =

∑
∀m,n

σm,n a(x − mL) a(x − nL) a∗(x − (m + n)L), (2.25a)

where, for integer m, n,

σm,n =

{
−1, m and n both odd,

1, otherwise.
(2.25b)

The required solution must meet the boundary conditions |a| → 0 as |x| → ∞.
We note that the representation (2.23a) of a(x, t) preserves the property (2.23b) of

a(x) so that

a(−x, t) = a∗(x, t); (2.26)

moreover it also possesses the two basic spatio-temporal symmetries

a(x + L, t ± T ) = ∓exp(iLt) a(x, t), (2.27a)

where the time T (not to be confused with the Taylor number) satisfies

LT = π. (2.27b)

From these, or directly, we may deduce that

a(x + 2L, t) = exp(2iLt) a(x, t), a(x, t + 2T ) = −a(x, t) (2.28a, b)

and we remark that the factor exp(2iLt), which emerges from the spatial shift 2L,
could be removed by considering the function exp(−itx)a(x, t).

The symmetries of a(x, t) can be translated to the properties of A(χ, t; ϕ, t0) defined
by (2.21a); the most important of these concerns its nature after the time 2L/c during
which the pulse-train drifts a distance 2L. Result (2.28a) can be used to show that

A
(

χ, t +
2L

c
; ϕ, t0

)
= A

(
χ, t; ϕ + 2L

[
t0 − 2L

c

]
,

[
t0 − 2L

c

])
, (2.29a)

which generalizes to

A
(

χ, t +
2NL

c
; ϕ, t0

)
= A

(
χ, t; ϕ + 2NL

[
t0 − (N + 1)

L

c

]
,

[
t0 − 2NL

c

])
,

(2.29b)

for integer N . This shows that, following the time shifts, the phase angle ϕ is changed,
as is the time origin t0 of the function a(x, t). Furthermore the symmetry (2.28a)
shows that A is invariant under the (effective spatial) translation Ω → Ω +2L, while
we note the trivial invariance under the change of phase ϕ → ϕ + 2π. Finally the
symmetry (2.28b) implies that

A(χ, t; ϕ, t0) = (−1)MA(χ, t; ϕ, t0 + 2MT ), (2.30a)

for integer M .
When there exist integers M = MP and N =NP such that L2/πc = L/T c = MP /NP

is rational, the function A has the property

A
(

χ, t +
2NP L

c
; ϕ, t0

)
= (−1)MP A(χ, t; ϕ + 2NP Lt0, t0). (2.30b)
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Ignoring the phase shift ϕ → ϕ + 2NP Lt0, we see that A(χ, t; ϕ, t0) has period
2NP L/c = 2MP T . Furthermore, the phase is also periodic for particular values of t0.
Essentially we have two periods, namely 2L/c and 2T , which, if incommensurate,
implies that the solution lies on a torus.

3. The pulse-train
We have presented our pulse-train (2.23) as a Fourier series in time with coefficients

which, under space shifts, are generated by the single amplitude function a(x). Though
these individual pulse amplitudes solve (2.25), that is not the most convenient method
to determine them. Instead we consider in § 3.1 an alternative Fourier series in space,
which captures the class of spatially periodic functions of period 2L = 2π/T in the
sense of (2.28a). Then, in § 3.2, following the numerical solution of initial value
problems, we identify the temporally periodic sub-class of solutions (see (3.8) below)
with half-period 2T as defined by (2.28b). The coefficients of this Fourier series in
space are generated, after appropriate equal interval time shifts, by a single function

Â(t). In Appendix A we establish the equivalence of the Fourier series in space with

time-shifted coefficients Â (necessary to achieve temporal periodicity) and the Fourier
series in time with space-shifted coefficients a (necessary to achieve spatial periodicity),
namely the pulse structure (2.23). Then, in Appendix B, we establish the remarkable

and elegant result that Â(t) is simply the Fourier transform of a(x). We illustrate
the properties of our spatio-temporal periodic solution in § 3.3 with the minimum-λ
solution at λ= λinf (see (2.24b)) and offer an explanation as to why our solutions only
exist over a limited range of L at given λ (�λinf ).

3.1. Spatially periodic solutions; period 2L

The spatial periodicity dictated by (2.28a) is met by the Fourier series representation

a(x, t) = exp(itx)
∑

∀n

An(t) exp(inT x) (3.1)

and the substitution of (3.1) into (2.22) shows that the functions An(t) satisfy

dAn

dt
− [λ − (t + nT )2]An = −

∑
∀α,β

An+α(t) An+β(t) A∗
n+α+β(t) (3.2a)

together with the initial conditions

An(t) → 0 as t + nT ↓ −∞. (3.2b)

We can make some preliminary estimates for conditions that non-trivial solutions
within the spatially periodic class must satisfy. To that end we average over the
periodicity length 2L and derive the mean energy and dissipation integrals

E(t) =
1

2L

∫ L

−L

|a(x, t)|2 dx =
∑

∀n

|An(t)|2, (3.3a)

D(t) =
1

2L

∫ L

−L

∣∣∣∣∂a

∂x
(x, t)

∣∣∣∣2 dx =
∑

∀n

(t + nT )2 |An(t)|2, (3.3b)

which, in view of (2.22), satisfy

1

2

dE
dt

= λE − D − 1

2L

∫ L

−L

|a(x, t)|4 dx. (3.4)
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On each successive time interval (N − 1/2)T � t � (N + 1/2)T , the form of (3.3b)
implies the inequality

D � (t − NT )2 E (�0) (3.5a)

for all integer N , while in addition use of the Cauchy–Schwartz inequality gives

1

2L

∫ L

−L

|a(x, t)|4 dx � E2. (3.5b)

The substitution of these inequalities into (3.4) shows that the growth of E is bounded
above by

1

2T
ln

[
E((N + 1/2)T )

E((N − 1/2)T )

]
�

1

T

∫ T/2

−T/2

[(λ − t2) − E]dt = λ − T 2

12
− 1

T

∫ T/2

−T/2

E dt.

(3.6a)

In view of the non-negativity of E, this result implies that finite-amplitude solutions
necessarily decay when

λ<
T 2

12
=

π2

12L2
. (3.6b)

This energy stability argument places a lower bound on λ for the existence of finite-
amplitude solutions.

3.2. Temporally periodic solutions; half-period 2T

In view of the fact that all previous evidence indicates that individual pulses cannot
exist close to critical (see, for example, Ewen & Soward 1994a), we were doubtful that
pulse-train solutions are possible. In contrast, numerical simulations presented by
HBS provide compelling evidence to the contrary. So, guided by HBS, we began by
tackling the initial value problem (3.2) for particular values of λ and T , together with
plausible choices of the amplitudes An(0). Our expectation was that, if such pulse-

train solutions exist, they have temporal period T and the structure An(t) = Â(t +nT ).
On solving the initial value problem we were rewarded to discover that the solution
quickly locked onto a stable (within our spatial periodicity class) solution. The surprise
however, which supported our earlier scepticism, was to find that the solution did not
have the simple period T structure. Instead the solutions acquired a period 4T with
the more complicated form

An(t) = µnÂ(t + nT ) (3.7a)

where

µ0 = µ1 = 1, µn+2 = −µn (3.7b)

for all integer n. The resulting representation

a(x, t) = exp(itx)
∑

∀n

µnÂ(t + nT ) exp(inT x) (3.8)

of (3.1) satisfies all the spatio-temporal symmetries (2.27) and (2.28), while we show
in Appendix A that it leads to the pulse-train structure (2.23a).

The substitution of expression (3.8) into (2.22) shows that it is a solution when Â(t)
satisfies

dÂ

dt
−

(
λ − t2

)
Â = −

∑
∀m,n

σm,nÂ (mT + t) Â (nT + t) Â
∗
((m + n) T + t) (3.9a)
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with σm,n defined by (2.25b), where we have used the identity

µβ µm+β µn+β µm+n+β ≡ σm,n, (3.9b)

which holds for all integers m, n and β . (If the simpler solution An(t) = Â(t +nT ) had
existed, it would also satisfy (3.9a) but with σm,n ≡ 1 for all m and n. We believe that
no such solutions exist.) The fact that the expression (3.8) leads to terms with either
sign in the nonlinear part of (3.9a) appears to be the essential ingredient necessary
for non-trivial solutions satisfying the initial condition

Â(t) → 0 as t ↓ −∞. (3.9c)

Since all the coefficients in (3.9a) are real, we restrict attention to real solutions

Â(t). As a result a and ∂a/∂x are real and pure imaginary on the symmetry axis
x = 0, where they take the values

a(0, t) =
∑

∀n

µnÂ(t + nT ) and
∂a

∂x
(0, t) = i

∑
∀n

µn(t + nT )Â(t + nT ). (3.10a, b)

Additionally, we introduce amax(x) ≡ max{|a(x, t)|}, where the maximization at given
x is taken over the half-period 2T ; remember that a(0, t + 2T ) = −a(0, t). Whether
or not amax(0) is the maximum amplitude over all x and t is unclear; nevertheless, it
certainly provides a useful measure of the amplitude of our solution.

In Appendix B we show that Â(t) in the expansion (3.8) is linked to the pulse
amplitude a(x) in (2.23) by

Â(t) =
1√
2L

F{a}(t) ≡ 1√
2L

∫ ∞

−∞
a(x) exp(−itx) dx, (3.11a)

where we have introduced the Fourier transform F. Use of the inverse Fourier
transform F−1 leads us to the result

a(x) =
√

2L F−1{Â }(x) ≡ 1√
2T

∫ ∞

−∞
Â(t) exp(itx) dt. (3.11b)

Having made the choice that Â(t) is real, the symmetry property a(−x) = a∗(x) (see
(2.23b)) follows immediately. These Fourier transform results are remarkable in that
they originate from the Fourier series (A 2a) in x (periodicity length L/2 = 2π/4T )
and (A 2b) in t (periodicity time 4T = 4π/L). The link established in Appendix A,
upon which Appendix B builds, is non-trivial. Many of the subtle and elegant results
stem from the factor exp(itx) in (3.1) and the necessity of superimposing the four
distinct structures of which (A 1a) is composed.

We comment briefly on the mean energy (3.3a) introduced in § 3.1. Upon substitution
of the ansatz (3.7) it reduces to

E(t) =
∑

∀n

|Â(t + nT )|2 (3.12)

with period T . Its time average

〈E〉 ≡ 1

T

∫ T/2

−T/2

E dt =
1

T

∫ ∞

−∞
|Â(t)|2 dt (3.13a)
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Figure 1. Contours of
√

〈E〉 vs. the pulse spacing L for the five values λ= 2.55 (innermost
curve) 2.6, 3, 4 and 5 (outermost). Particular parameter combinations are identified by small
circles and are labelled I–V for future reference.

gives the space–time average of |a|2. An alternative representation is obtained by
expressing a in the form (2.23a) and performing the time integration first. This yields

〈E〉 ≡ 1

2π

∫ L/2

−L/2

∫ T

−T

|a(x, t)|2 dt dx =
1

L

∫ ∞

−∞
|a(x)|2 dx, (3.13b)

which, in view of Parseval’s theorem for Fourier transforms, is consistent with (3.13a).
Finally we note that the inequality (3.6a) limits the energy of our periodic solutions

to the range

〈E〉 +
T 2

12
� λ. (3.14)

3.3. The nature of the solutions

Once we had identified a periodic structure by numerical solution of our initial value
problem we investigated (3.9a), not on the infinite interval −∞ < t < ∞ but, rather,

over the quarter-period T . To that end we introduced Bn(t) = Â(t + nT ) = µnAn(t)
and solved (3.9a) over the interval 0 � t � T subject to the periodicity conditions
Bn(0) = Bn−1(T ) with, of course, Bn(t) → 0 as n ↓ −∞. This numerical work was
executed using the AUTO package (Doedel et al. 1997) on a finite set of 2N + 1
equations based on the approximation that Bn(t) ≡ 0 on the interval for |n| >N , where
N was chosen to be sufficiently large to ensure convergence.

The contours on figure 1 illustrate the value of the square-root of the mean energy
〈E〉 as a function of the distance L = π/T between pulses at various values of λ.
Significantly, all solutions are of finite amplitude. That is easily understood because
the linear solution of (3.9a) is proportional to exp(λt −t3/3) and so diverges as t ↓ −∞;
hence it cannot satisfy the initial condition. The contours evaporate at Linf ≈ 2.11831
and 〈E〉 ≈ 0.40251 when λinf = 2.54074 as noted in (2.24b). This constitutes the lowest
value of λ at which a pulse-train solution could be found. Since this solution is only
just activated and then only at the particular value T = Tinf ≡ π/Linf ≈ 1.483, it is of
some interest to investigate some of its properties.
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In figure 2(a) we show the amplitudes An(t) (which, recall, satisfy (3.7a)) for a
near-minimizing solution over roughly two periods (that is, 8T ). We notice that at
any particular instant only three (or, at worst, perhaps four) amplitudes are non-zero
to graph-plotting accuracy. This suggests that the nature of the solution might be
amenable to understanding within the framework of a highly truncated system, which
only involves the m = n= 0 nonlinear term in (3.9a):

dÂ

dt
= (λ − t2 − |Â|2)Â. (3.15)

The amplitude of the general solution is given by

|Â|2 = exp[2(λt − t3/3)]

/{
2

∫ t

t1

exp[2(λτ − τ 3/3)]dτ

}
, (3.16)

which exists on t1 < t < ∞ where t1 is an arbitrary constant. The solution satisfies
Â → 0 as t → ∞ as required but diverges to ∞, not as t ↓ −∞ (the behaviour
of the linear solution) but rather as t ↓ t1. Accordingly this is not an acceptable
solution. Since our solutions appear to depend on the role of the coefficients µn, it is
hardly surprising that this severe truncation, which fails to capture that dependence, is
inadequate. Indeed we believe that the alternating signs generated by the µn are crucial
for the existence of our pulse-train solutions. Furthermore the most likely candidate
for the maintenance of the pulse-trains is the nonlinear term [Â(T + t)]2Â

∗
(2T + t),

associated with σ1,1 = −1 (m = n= 1), which may act as a nonlinear trigger for Â(t)
when t lies roughly in the range −2T � t � −T .

The physical nature of our solution is described by the pulse-train (2.23), which
combines pulses a(x ∓ (2n + 1

2
)L) each of frequency ±(2n + 1

2
)L. In figure 2(b) we

illustrate the amplitude |a(x)| for our minimizing solution as well as its real and
imaginary parts which possess symmetries Re{a(−x)} = Re{a(x)} and Im{a(−x)} =
− Im{a(x)}. (The graph only shows the one pulse centred at x =0.) Relative to
this origin the pulse-train consists of that pulse together with neighbours possessing
centres at x = nL (integer n) and frequencies that differ by L. This means that the
amplitude a(x, t) with pulse centres at x = nL + L/2 defined by (2.23) behaves in a
complicated way. We do, however, give a time-series plot of a(0, t) (which is real
valued, see (3.10a)) on figure 2(c), because we anticipate the interaction between the
pulses centred at x = −L/2 and x =L/2 to be greatest there. Further, on figure 2(d) we
portray phase-plane plots of |∂a/∂x| against |a| corresponding to the three locations
x = 0, L/4 and L/2. As time t proceeds the closed loops are followed in an anti-
clockwise sense and completed in the half-period 2T . The smallest loop occurs at
the pulse centre x = L/2, where interaction with its neighbours is minimized and, in
contrast, the largest loop occurs half-way between two pulses at x =0. (Notice that
this loop appears to possess peculiar corners on the axes but this is merely a reflection
of the fact that a is real and ∂a/∂x is pure imaginary; see (3.10) and figure 2(c).)
It is remarked that contours are unchanged under the shift x → x + L and the
reflection x → −x, which is why we can take our representative sample within the
range 0 � x � L/2.

It is not easy to understand the mathematical properties of our pulses by thinking
of them as solutions of (2.25a); the indirect approach involving the Fourier transform

Â(t) just discussed is far more transparent. Nevertheless there are some pertinent
observations that we can make concerning the necessary interaction of a pulse with
its neighbours. Suppose the pulses are non-interacting, which would formally be the
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Figure 2(a, b). For caption see facing page.

case in the limit L → ∞; then (2.25a) reduces to

d2a

dx2
+ (λ + ix − |a|2)a = 0. (3.17)

Hocking (private communication, circa 1980) reported attempting to seek localized
solutions of (3.17) satisfying |a| → 0 as |x| → ∞ but could find none. Later calculations
by Ewen & Soward (1994a) also suggested that this equation admits no localized
solutions. This gives a very interesting situation in which pulses can exist within
an interacting train but not in isolation. Neighbour interactions play a crucial role
and are necessary for the existence of the train. Moreover the phase of each pulse
is carefully tuned to increase successively by π/2 and then decrease by −π/2 as
indicated by the series (2.23a), a property linked to the alternating signs of the pairs
(µ2n, µ2n+1) = (−1)n(1, 1) for integer n.

The remarks concerning the necessary interaction of An(t) with its neighbour
explains why, at given λ, there is a maximum value of T and corresponding minimum
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Figure 2. The solution at the point labelled I on figure 1, close to λinf . Here λ= 2.541,
(L,

√
〈E〉) ≈ (2.118, 0.63443) with T ≈ 1.48328. (a) The functions An(t) portrayed for successive

integer n and separated by time T . (b) The pulse a(x) determined from the functions An(t)
using (3.7a) and (3.11b). The modulus |a(x)|, real part Re{a(x)} and imaginary part Im{a(x)}
are identified by the continuous and long and short dashed lines respectively; a(0) ≈ 0.55635.
(c) The time series of a(0, t) (constructed using (3.10a)); this function is of period 4T . (d) The
phase portraits of |∂a/∂x(x, t)| vs. |a(x, t)| for the cases x =0, L/4 and L/2. The loops are
followed in an anti-clockwise sense and are completed in the half-period 2T .

value of L, namely Lmin, at which pulse-trains can persist. Likewise, the argument
just given concerning the interaction of neighbouring pulses explains why there is a
maximum possible value of L, namely Lmax. It is however important to appreciate
that pulse neighbours are not identified by neighbouring An(t) despite the suggestive
terminology. This aspect is highlighted by the fact that our solutions exist only on
some limited range Lmin(λ) � L � Lmax(λ), as evident on figure 1, being terminated at
small L by the large T separation of the An and at large L by pulse separation.

Interestingly, inside the range Lmin(λ) < L < Lmax(λ) there are two solutions, one of
small amplitude and the other large; see figure 1. The small-amplitude solution is
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presumably unstable, while the stability of the large-amplitude solution is evidently a
complicated matter outside the scope of our present analysis. We simply remark that
for disturbances within the spatial periodicity class (3.1) of wavelength 2L, the large-
amplitude solutions that we report for moderate λ are likely to be stable. Certainly the
solution of our initial value problem had no difficulty locking onto them. The question
of sideband instability to disturbances of different wavelength is a far more difficult
issue to address. Nevertheless, we anticipate that the L which maximizes the mean
energy provides an excellent candidate for stability against sideband disturbances and
so we focus on such solutions in the following section, particularly § 4.1.

4. Two limiting cases
In this section we apply our results to two limiting problems. In § 4.1 we consider

the case of almost co-rotation ε1/2 � δ � 1 and compare our predictions with HBS’s
results for δ =O(ε1/2). In § 4.2 we discuss the implication of our results for the
situation in which the outer sphere is at rest δ = 1. For the first time we show that
finite-amplitude nonlinear solutions composed of pulse-trains may occur close to the
local critical Taylor number Tc, subcritically to the Soward & Jones (1983) global
critical value Tcrit.

The nature of our development is sensitive to the small value of the group velocity
c. When ε1/2 � δ � 1, the value of c is truly negligible and the apparatus set up in § 2
can be applied directly with c = 0. In contrast, when δ = 1 or, more generally, when
δ =O(1), c increases linearly with latitude. Thus although it is locally constant on the
pulse length scale, c does vary on the longer length scale of the locally unstable region
on which motion occurs. This means that the development in § 2, which assumes that c

is constant, does not provide a uniformly valid solution on the longest length and time
scales. The main purpose of § 4.2 is to show that with fairly minor modifications to
the development in § 2 a uniformly valid solution can be constructed, which continues
to be characterized by the pulse train (2.23a) but now with L dependent on t rather
than just a constant.

4.1. Almost co-rotation: ε1/2 � δ � 1

We begin by recapping the parameter values appropriate to the case of small δ, when
the spheres almost co-rotate. To that end, we regard the frequency ω as a function
not only of θ , k and T but now also of δ. So, in place of (2.8), we have

ω = ω(θ, k, T , δ). (4.1)

Critical values in the narrow-gap cylinder limit are θ = 0, δ = 0, k = k0, T = T0,
ω = ω0 = 0, where

k0 ≈ 3.116, T0 ≈ 1707.76. (4.2a, b)

The symmetries of the problem ensure that

[ω,δ]0 = 0, [ω,θ ]0 = 0, [ω,δk]0 = 0, [ω,kθ ]0 = 0, (4.3a, b, c, d)

where the zero subscript indicates that all quantities are evaluated at the cylinder
critical values under the limit δ ↓ 0. About those values the local Taylor number and
frequency have the expansions

Tl(θl) = T0 − [ω,δδ]0
2 [ω,T ]0

δ2 − [ω,θθ ]0
2 [ω,T ]0

θ2
l , ωl(θl) = [ω,δθ ]0 δ θl, (4.4a, b, c)
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in which

[ω,δδ]0
T0 [ω,T ]0

≈ 0.0152,
i [ω,δθ ]0
T0 [ω,T ]0

≈ −0.599,
[ω,θθ ]0

T0 [ω,T ]0
≈ −4.330, (4.5a, b, c)

together with the additional results

i [ω,δkθ ]0
T0 [ω,T ]0

≈ 0.0553,
[ω,kk]0

T0 [ω,T ]0
≈ −0.296, −i T0 [ω,T ]0 ≈ 13.01. (4.5d, e, f )

Correct to leading order these determine

γ =
{−[ω,kk]0[ω,θθ ]0}1/2

(−2 [ω,δθ ]0 δ)
≈ 0.945

δ
, µ3 =

[ω,kk]0
2i [ω,δθ ]0 δ

≈ 0.247

δ
(4.6a, b)

(see (2.19)).
For small δ it is also appropriate to reinstate the O(θ2) term in (2.17) which then

becomes

∂A
∂t

+ c,χχ
∂A
∂χ

= [λ(χ) + iχ − |A|2]A +
∂2A
∂χ2

, λ(χ) ≡ λ(0) − Υ 2
ε χ2, (4.7a, b)

where χ is measured from the equator (i.e. θ = µε2/3χ or, equivalently, χl = 0 in
(2.20a)) and

c,χ =

(
− cg

cp

)
Υε

k0γ
≈ 0.147 (δε)1/3,

cg

cp

=
k0[ω,δkθ ]0
[ω,δθ ]0

≈ −0.288, (4.7c, d)

Υε = ε1/3 γ /µ ≈ 1.506 (ε/δ2)1/3. (4.7e)

Most of these quoted values were determined by Soward & Jones (1983) although the
size of [ω,T ]0 was given by Davey (1962). We recalculated and checked these results
(as well as computing [ω,δkθ ]0) by direct numerical differentiation.

There are a number of features of equation (4.7a) that are worthy of comment.
Significantly, the range

|χ | <
√
λ(0)/Υε = O

(
δ2/3

/
ε1/3

)
(4.8)

on which the system is locally unstable (λ(χ ) > 0) decreases in width with decreasing
δ. Our pulse-train analysis of § 3 was based on the idea that the local value of λ(χ) is
approximately constant over the length scale of pulses. Strictly, that approximation
is only valid when Υε � 1, in contrast to the assumptions underpinning HBS who
considered the case Υε =O(1). Furthermore, on the relatively long length scale (4.8)
of the locally unstable region, the group velocity c,χχ =O(δ) is negligible and so
(4.7a, b) reduces to

∂A
∂t

=
(
λ + iχ − Υ 2

ε χ2 − |A|2
)
A +

∂2A
∂χ2

, (4.9)

where now λ≡ λ(0), a constant as in (2.22). Nevertheless, the small but finite group
velocity will lead to non-uniformities on a relatively long time scale, which are not
captured by (4.9). Indeed (4.19) below shows that the pulse centres drift apart causing
the pulse centre separation L to increase very slowly with time L(t) = L(0) exp(c,χ t)
(see (4.20b)). For δ � 1 this is a small perturbation of little importance and so we
postpone discussing the implications of c,χ 	= 0, until we consider the case δ =O(1)
in the next subsection. With the drift ignored c,χ ≈ 0, we have L(t) = L a constant.
Accordingly we can make sensible comparisons with the pulse-train-like solutions
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λ Amax N T L −2Ω/L

3.375 1.3897 46 1.3585 2.3126 —
3.875 1.6047 6 1.2967 2.4228 0.5226
3.975 1.4311 10 1 .2800 2.4544 0
4.0 1.6248 9 1.2889 2.4375 0.6647
4.5 1.7910 67 1.2600 2.4933 0.8357

Table 1. The characteristics of HBS’s numerical solutions to equation (4.9) for Υε = 1/4 at
various values of λ. The initial pitchfork bifurcation from the undisturbed basic state occurs at
λ= λp = 4.25. The interpretations of the various properties are given in the text below (4.11).
Data for a symmetry-preserving case Ω = 0 are written in italics.

obtained by HBS for numerically small values of Υε , specifically Υε = 1/4, with
our pulse-train solutions valid for Υε � 1. In practice, HBS non-dimensionalized the
amplitude equation (2.16) in a different way to that done here and they considered
(C1a) of Appendix C rather than (4.9). Here we describe the nature of HBS’s
solutions relative to our units, but quantify the relationship between the formulations
in Appendix C for reference.

HBS considered the bifurcation sequence for various values of Υε . For small Υε

the initial bifurcation is via a supercritical pitchfork at λ= λp ≡ (2Υε)
−2 + Υε to a

steady finite-amplitude state A = As with the symmetry property As(−χ ) = A∗
s (χ)

(cf. (2.23b)). This state has extremely small amplitude, which immediately following
the bifurcation is given by

As(χ) ≈ 21/4(λ−λp)1/2 exp
[
−1

/(
16Υ 3

ε

)
− 1

2
Υε χ2 + 1

2
i χ/Υε

]
for 0 < λ− λp � Υε

(4.10)

(see § 3.1, figure 6 of Harris et al. 2000; also our Appendix C). That loses stability via
a supercritical Hopf bifurcation (e.g. HBS figure 5 with Υε = 1/2

√
2). The associated

non-zero temporal mean limit cycle (HBS figure 9) expands until it becomes
a homoclinic cycle with the zero-amplitude state as its vertex. That homoclinic
cycle glues with the corresponding oppositely signed cycle to leave a limit cycle
with zero temporal mean (HBS figure 11), much like our pulse-train solution
ASP(χ, t) = a(χ, t; L) (see (2.23a)). This periodic solution continues to exhibit the
symmetry ASP(−χ, t) = A∗

SP(χ, t) (cf. (2.26)), which HBS referred to as a Symmetry-
Preserving (SP) solution. Even for the moderate value Υε = 1/4, the solution is strongly
subcritical, exists on a small-amplitude solution branch down to some lesser value of
λ and then advances back along a large-amplitude solution branch (HBS figure 12).
This is compatible with our figure 1 which shows that for each L on Lmin <L<Lmax

there is both a small- and a large-amplitude solution.
The picture painted by HBS was complicated by the fact that on returning along

the initially stable upper branch the solution became unstable to a second frequency
(also within the SP-class), which was sometimes found to lock in the sense of Arnold
tongues. Such a five-fold increase in period was detected by HBS in the case Υε =1/4 at
λ=3.975 and identified on HBS figure 12. Its character is illustrated on HBS figure 20,
which is reproduced here relative to our units in figure 3 so that we can make direct
comparison with our new results. The time series graphed in figure 3(a) identifies
the underlying period 4T ≈ 5.12 (and the corresponding frequency L/2 ≈ 1.227, see
table 1). This is also the period of one cycle in the phase portrait figure 3(b), which is
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Figure 3. The symmetry-preserved (SP) Υε = 1/4 solution ASP(χ, t) of equation (4.9) at
λ= 3.975 with N = 10 as identified in table 1. (The diagrams are based on figure 20 of
HBS but recast in terms of our units.) (a) The time series of Re{ASP(0, t)} which is almost
periodic on time 4T but is actually periodic over time 20T ≈ 25.6. (b) The phase portrait of
Im{∂ASP/∂χ(0, t)} against Re{ASP(0, t)}. The five loops are followed in the anti-clockwise
sense indicated.

followed in the anti-clockwise sense. Since five circuits are required before the solution
repeats itself, the complete period is 20T .

HBS also discovered that on solving (4.9) as an initial value problem the realized
solution generally breaks the symmetry and exhibits the drifting phase Ω present in
(2.21a). They deemed these Symmetry-Broken (SB) solutions and we link them to

ASB(χ, t) = exp(iΩt) a(χ − Ω, t; L), (4.11)
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as defined by (2.21) and (2.23) with c = ϕ = 0. For certain values of λ at Υε = 1/4 HBS
found relatively simple solutions, whose characteristics are listed in table 1. By this
we mean that in addition to a frequency L and corresponding half-period 2T an extra
beating period 2NT can be clearly identified over which the amplitude is modulated.
(The relevant value of N is given in the third column.) In the second column, Amax

denotes the maximum of |A(χ, t)| over t at χ = 0. In view of the drifting phase,
it corresponds to our amax(x) at x = −Ω and presumably underestimates the likely
maximum value amax(0). This shift of origin is important for comparison purposes
and so we list 2x/L = −2Ω/L rather than Ω in the last column.

Though HBS generally found very complicated structures unless the parameter
values were carefully chosen as in table 1, the presence of an underlying frequency
L was a robust feature of all their solutions and in some cases the drifting phase
Ω could be determined. Finally we note that the SP-solution listed in italics was
identified from within that SP-class. Though it was stable to SB-disturbances, it may
not necessarily be the solution achieved following the time evolution from more
general initial data.

From our small-Υε point of view the pulse-train solution (4.11) is only the leading-
order approximation to HBS’s solutions. The value of Ω and any long-time-scale
aperiodic behaviour such as the beating period are determined by a higher-order
theory, which is influenced by the fact that the local value of λ(χ) varies spatially
and is not a constant as assumed by our theory. Not only does that modulation
lead to non-uniformities but the fact that no solution is possible for λ(χ) < λinf (see
(2.24b)) is also significant. In short, the pulse-train must terminate abruptly, dropping
suddenly from a finite amplitude to zero in much the same way as at a front. Often
the existence of fronts provide a mechanism for frequency selection but here our belief
is that because of the robust nature of the wave-train, it maximizes its amplitude near
χ = 0, so fixing the frequency. This viewpoint is supported by the frequency values L

listed in table 1 which compare favourably with those associated with the maximum
mean energies 〈E〉 on figure 1.

Our large-amplitude solution for λ= 4 (in the middle of the range of values itemized
in table 1) at L = 2.35107, where 〈E〉 is maximized for this choice of λ, is illustrated in
figure 4. There is considerable interaction between both neighbouring An(t) (figure 4a)
and pulses (see figure 4b). The characters of the time series for Re{a(0, t)} and of
our phase portrait of |∂a/∂x(0, t)| against |a(0, t)| are illustrated in figures 4(c) and
4(d) respectively; both of these compare favourably with their counterparts for the
SP-solution of equation (4.9) presented in figure 3, albeit after moduli are taken.
Likewise the time series for |a(L/4, t)| (also given on figure 4c) is in reasonable
accord with the SB-solution time series for |ASB(0, t)|, see figure 5(a), pertaining to
the choices Υε = 1/4 and λ=3.875 with −Ω ≈ 0.263 L close to L/4. Similar good
agreement is noted between the phase portrait of |∂a/∂x(L/4, t)| against |a(L/4, t)|
in figure 4(d) and figure 5(b). An interesting feature is the kinks evident on both the
phase portraits together with further plots given in HBS (their figures 22(b) and 23(b)).
The space–time contour plot of Re{ASB(χ, t)} illustrated in figure 5(c) (based on HBS
figure 21e) is important for it provides evidence of the pulse-train structure, though
even more convincing evidence is provided by the diagnostic space–time contour plot
of |ASB(χ, t)| in HBS figure 21(f ), which is not reproduced here. On figure 5(c) can
be identified the frequencies of five (and only five) pulses centred at χ = Ω+(n+1/2)L
(n= −2, −1, 0, 1, 2), that is, at ≈ −4.2673, −1.8444, 0.5783, 3.0011 and 5.4239. Four
dislocations of the patterns occur half-way between the pulse centres at χ = Ω + nL

(n= −1, 0, 1, 2); only the outer two are shown unambiguously on the figure, while
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the inner two are less definitive. These dislocations are close to the local maxima
(except for the left-hand maximum, which is presumably a manifestation of non-
uniform conditions at the end of the pulse train) and minima of ASB(χ, t) at t =20
graphed in figure 5(d).

We have already remarked that for fixed λ and L the evidence of figure 1 is
that there are two possible pulse-trains. In figure 4 we showed the solution with the
largest energy when λ=4 (point II on figure 1) and for comparison the corresponding
small-amplitude solution also with L =2.35107 (point III on figure 1) is illustrated
in figure 6. It is presumably unstable but does help us to understand the structure
of possible solutions. We will see in the following subsection that the group velocity
leads to pulse separation and a tendency for L to slowly increase with time so that
the pulse-train character for larger L is of particular interest. Simply to illustrate the
nature of the large- and small-L limits we plot the An(t) and pulse profiles a(x) for
λ= 4 at Lmax ≈ 2.77229 in figure 7 and at Lmin ≈ 1.26040 in figure 8 corresponding to
the points IV and V respectively on figure 1. In the former case, with T relatively
small, neighbouring An(t) are evidently strongly interacting, whereas in the latter case
they are not. Curiously, this interaction between neighbouring pulses is more marked
when they are well separated with L =Lmax. Apparently, when they are close together
with L = Lmin the pulse profile become smoother. This must reflect the fact that the

inverse Fourier transform a(x) of the smooth transform function Â(t) is itself smooth,
though physically why a(x) should have this property is not obvious.

4.2. Outer sphere at rest

When the outer sphere is at rest, δ = 1, we note that the cylinder critical values are

kc ≈ 3.1266, Tc ≈ 1694.95. (4.12a, b)

Significantly these values are smaller than the true critical values kcrit ≈ 3.1769 and
Tcrit ≈ 1767.90 (Soward & Jones 1983) for the onset of linear instability. From our
calculations we obtain

−i Tc [ω,T ]c ≈ 13.10, −[ω,θ ]c ≈ 7.693, [ω,k]c = 0, (4.13a, b, c)

i[ω,θθ ]c ≈ 53.4, [ω,kθ ]c ≈ 0.69, i [ω,kk]c ≈ 3.83, (4.13d, e, f )

where the value of i[ω,T ]c is in accord with Davey’s (1962) result. Use of (2.19) and
(2.20c) determines

γ ≈ 0.929, µ3 ≈ 0.249, Υε ≈ 1.478 ε1/3, (4.14a, b, c)

where our value of µ agrees with Walton’s (1978) value µ3 ≈ 1/4.0199 ≈ 0.2488. In
turn, these determine the coefficients (2.18d, e) in (2.17), which become

λ ≈ 2.71 ε−2/3 T − Tc

Tc

− Θ2
l , c ≈ 0.096 Θl. (4.15a, b)

All the scale estimates made in the previous section continue to hold, but simplify in
the sense that δ =O(1).

As remarked in § 4.1, the region of local instability (λ> 0) expands with increasing δ

and when δ =O(1) it has width O(ε−1/3) relative to the inner χ-units (see (4.8)). That
is why in § 2 we developed local solutions A (recall (2.21)) valid on the θ-length scale
O(ε2/3) in the neighbourhood of some θ = θl =O(ε1/3). These pulse-train solutions
drift slowly away from θ = 0 at the positive group velocity c defined by (4.15b). Since
c increases linearly with distance from the equator, our pulse solutions exhibit spatio-
temporal non-uniformities on the long length χ =O(ε−1/3) of the locally unstable
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Im{ā}
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region and the associated long time t =O(ε−1/3). Remarkably, our pulse structure can
be embedded within a spatially uniform representation and to demonstrate this we
replace (2.15) with[

ψ̂

ĥ

]
= exp

(
i kcθ

ε

)∑
n∈S

[
− ifn(z)

gn(z)

]
bn(θ − θn, τ ) exp

{
i

[
(−1)nπ

4
+ ϕn(τ )

]}
+ c.c.,

(4.16a)

where

ϕn(τ ) = −
∫ τ

τ0

[ω,θ ]cθn(τ ) dτ. (4.16b)

Here (fn(z), gn(z)) represents the eigenfunction at the centre θ = θn(τ ) of each
individual pulse while the amplitude bn(θ − θn, τ ) is measured in the frame relative
to its moving centre. Furthermore, the summation is taken over the set S of integers
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Figure 4. The solution at the point labelled II on figure 1 with λ= 4, (L,
√

〈E〉) ≈ (2.35107,
1.41246) and T ≈ 1.33625. Subplots (a)–(d) correspond to their equivalents for figure 2 (with
a(0) ≈ 1.4069) except that (c) shows the time series for both a(0, t) (solid line) and |a(L/4, t)|
(dashed) and (d) illustrates the phase portraits for the five cases x = nL/8 with n= 0, 1, . . . , 4.

n of order ε−1/3 such that θn lies in the locally unstable region and τ0 is some time
origin independent of n. Then, under the change of variables (2.18), each pulse has
the structure √

C bn(θ − θn) = (−[ω,θ ]c µ)1/2 ε1/3 a(x; L, λ), (4.17a)

in which a(x; L, λ) has the symmetry-preserving property a(−x) = a∗(x) and solves
(2.25a) as before. Relative to the scaled variables

x = χ − χn(t), θ = µε2/3χ, θn = µε2/3χn(t) (4.17b, c, d)

(cf. (2.18)) the pulse separation and phase differences are

L(t) ≡ χn+1(t) − χn(t), Φ(t) ≡ ϕn+1(t) − ϕn(t). (4.17e, f )
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Despite the fact that the pulse centres χn(t) drift polewards with time, both L(t) and
Φ(t) turn out to be independent of n (see (4.20) and (4.21)). This important property
permits the solutions bn(θ − θn) proportional to a to remain uniformly valid as time
proceeds. Strictly, the value of λ for each pulse bn is given by the local value (4.15a)
at θn(t), namely

λn(t) = λ(χn(t)) (4.18)

(see (4.7b)). This leads to the spatial non-uniformities already discussed in § 4.1 and
whose role we consider later.



Narrow-gap spherical Couette flow 303

−8 −6 −4 −2 0 2 4 6 8
χ

χ

0

8

16

24

32

40

t

Re{A SB}

1.5

1.0

0.5

0

−0.5

−1.0

−1.5
−10 −8 −6 −4 −2 0 2 4 6 8 10

A SB

(d )

(c)

Figure 5. The symmetry-broken (SB) Υε = 1/4 solution of equation (4.9) for λ= 3.875 with
L ≈ 2.423, Ω ≈ −0.633 and N = 6 as identified in table 1. (Based on figure 21 of
HBS but re-expressed in our units.) (a) The time series of |ASB(0, t)|. (b) The phase
portrait of |∂ASB/∂χ(0, t)| vs. |ASB(0, t)| followed in the anti-clockwise sense indicated. (c)
Contours of constant Re{ASB(χ, t)} with four dislocations at χ = Ω + nL (n= −1, 0, 1, 2)
(i.e. ≈ −3.056, −0.633, 1.790, 4.213). (d) The magnitudes |ASB| and Re{ASB} (Im{ASB}) at
time t = 20 identified by the continuous and long (short) dashed curves respectively.

The movement of χn(t) at the group velocity c is governed by

dχn

dt
= c,χχn, (4.19a)

where

c,χ =

(
− cg

cp

)
Υε

k0γ
≈ 0.1419 ε1/3,

cg

cp

=
kc[ω,kθ ]c
[ω,θ ]c

≈ −0.28 (4.19b, c)
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and this solution determines

χn(t) = χn(0) exp(c,χ t), L(t) = L(0) exp(c,χ t). (4.20a, b)

In other words, if the initial separation L(0) = χn+1(0) − χn(0) is the same for all
pulses, that continues to hold as time proceeds. Furthermore, since the frequency of
each pulse is also χn(t), the phases are given by (4.16b), which following the change
of variables (4.17) reduces to

ϕn(t) =

∫ t

0

χn dt =
χn(t) − χn(0)

c,χ

giving Φ(t) =
L(t)

c,χ

(4.21a, b)

independent of n. To see the connection with our earlier representations (2.21) for
A(χ, t) and (2.23) for a(x, t), we note that

ϕn(t) ≈ χn(0) t + 1
2
χn(0) c,χ t2 for t � ε−1/3, (4.22)
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Figure 6. The solution at the point labelled III on figure 1. As in figure 4 we have λ= 4 and
L = 2.35107 (T = 1.33625) but the energy is reduced to

√
〈E〉 ≈ 0.38016 and a(0) ≈ 0.31503.

Sub-plots (a)–(d) correspond to their equivalents for figure 2.

where χn(0) =O(ε−1/3). We set χn(0) = χl + Ω + (n + 1
2
)L(0), so that for t =O(1) we

have

χn(t) − χl =Ω +
(
n + 1

2

)
L(0) + χl c,χ t + O

(
ε2/3t2

)
, (4.23a)

and

ϕn(t) − χl t =
[
Ω +

(
n + 1

2

)
L(0)

]
t + 1

2
χl c,χ t2 + O

(
ε2/3t3

)
, (4.23b)

where χl =O(ε−1/3). We now obtain exact correspondence with (2.21) and (2.23),
on setting ϕ = 0 and t0 = 0 in (2.21) and identifying ±(2n + 1

2
) − 1

2
in (2.23a) with

our n. These restrictions on ϕ and t0 are not significant and non-zero values can
be accommodated by transformations. Accordingly (2.21) and (2.23) gives the short
O(1)-time-scale solution with L =L(0) and c = χlc,χ .
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1.05800) and T ≈ 1.13321. Sub-plots (a) and (b) correspond to their equivalents for figure 2
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Our new solution is uniform on the longer O(ε−1/3) time scale. The above
construction has given us essentially a spatially uniform structure that evolves with
pulses having separation L(t), centres χn(t) and amplitudes a(x : L(t), λn(t)). Both
L(t) and λn(t), defined by (4.18) and (4.20), vary on the long time O(ε−1/3). Evidently
the solution a(x : L(t), λn(t)) cannot remain valid on this long time for two reasons.
First, the pulses at the outer edge of the locally unstable region must collapse at
χn(t) once L(t) exceeds Lmax(λn(t)). Second, as L(t) increases so we must expect the
pulse-train to become unstable to sideband instabilities. In short, we must anticipate
chaotic behaviour on these long O(ε−1/3) length and time scales with the underlying
pulse-trains providing local structures on the shorter O(1) length and time scales. A
plausible scenario is that the pulse-train structures form space–time patches connected
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Figure 8. The solution at the point labelled V on figure 1. Here λ= 4, (L,
√

〈E〉) ≈ (1.26040,
0.47395) and T ≈ 2.49253. Sub-plots (a) and (b) correspond to their equivalents for figure 2
with a(0) ≈ 0.28905.

chaotically one to another across dislocations where L(T ) suffers an abrupt change
in value. We believe that they are sufficiently robust to regenerate themselves and to
be space-filling in the majority of the local unstable region defined by

|χ | <
√

λ(0)/Υε. (4.24)

Remember also that the pulse-train amplitudes cannot decrease continuously to zero
but must terminate abruptly at some finite size. Though this feature resembles a
front, it is not one in the conventional sense as we explained towards the end of
§ 1. The distinction is important because in many single-frequency systems it is the
frontal condition that selects the frequency which is determined by an inward group
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velocity across the front, measured relative to the moving pulse. Our problem is
not like this as our pulses move at the group velocity and so there is no relative
velocity. Furthermore, c increases linearly with Θl and possesses the sign appropriate
to outward propagation of energy from the equator towards the edge of the locally
unstable region where the pulses eventually disappear. In that alternative sense the
group velocity is directed outwards rather than inwards. Accordingly we anticipate
that local conditions dominate frequency selection (i.e. the value of L(t)) in each
patch. The final termination of pulse-trains at their outer limit might be regarded
simply as yet another stronger and more severe type of dislocation.

Finally we comment briefly on the nature of each of the individual pulses that
compose the wave-trains. To that end, we write a(x) in its polar form

a(x) = R(x) exp

[
i

∫ x

0

K(x) dx

]
, (4.25)

where the amplitude R and wavenumber K are real. The pulse solutions displayed
in figures 2(b), 4(b), 7(b) and 8(b) exhibit positive K . This is likely to be a generic
property and was certainly found to be the case for all the parameter values examined
in HBS. The upshot is that the modulated wave, which it describes at χ = χn(t), always
propagates in the direction opposite to the sign of the frequency χn(t). That means
that the waves propagate at velocity −χn(t)/K =O(χ) towards χ = 0, opposite to the
direction of the group velocity c =O(ε1/3χ). At the equator χ = 0 the pulse with the
nearest centre dominates and provides a wave which generally crosses the equator
as illustrated in figure 5(c). Only when the solution has the symmetry-preserving
property ASP(−χ, t) = A∗

SP(χ, t) with the equator half-way between pulse centres is
there no wave propagation across the equator.

5. Concluding remarks
The trivial observation that the phase ϕ in (2.21) is arbitrary has important physical

repercussions. Significantly the Taylor vortex pattern that (2.21) modulates may be
shifted latitudinally at will by appropriate choice of ϕ. Only when the radial structure
of the eigenfunctions (f (z), g(z)) in (2.5) directly influences the asymptotics can
the vortex boundary location be fixed, as it will at some higher order which is outside
the scope of our present study. This lack of determinism means, for example, that
we cannot distinguish between cases in which the equator is a vortex boundary,
a vortex centre or something asymmetric intermediate between the two. A similar
lack of determinism has its parallel for non-axisymmetric disturbances, in that any
modulation on an O(1) azimuthal length scale introduces no new terms in our
low-order amplitude equations and so has no influence on the results.

The polar representation (4.25) is helpful for an understanding of the nature of
the Taylor vortex structure as implied by our solutions. The amplitude R(x) = |a(x)|
clearly gives the amplitude of the envelope of the local wave. On the other hand the
local wavenumber K(x) only provides a small correction to the total wavenumber
ε−1/3kc + K , which determines the local phase velocity −χn(t)/[ε

−1/3kc + K]. From
that point of view its small magnitude |K | has little physical significance; nevertheless
its sign does. Indeed, since the signs of K and kc are the same, the vortices
propagate with velocity −ε1/3χn(t)/kc in the same direction as the envelope
wave (4.25), which has velocity −χn(t)/K . This is interesting because though the
vortex drift velocity is the same for all vortices inside each pulse, it differs by
−ε1/3[χn+1 − χn(t)]/kc = −ε1/3L(t)/kc between neighbours. The vortices in the outer
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pulse overtake the inner pulse in such a way that one vortex is lost in an O(1) time.
Note that one envelope pulse wave is lost in exactly the same time, a process which
is clearly evidenced by the dislocations at χn(t) + L(t)/2 half-way between two pulse
centres in figure 5(c); indeed that is the location at which the vortices evaporate.

When the spheres almost co-rotate, ε1/2 � δ � 1, the dislocations are fixed in
space. This limit is illustrated well by the HBS results portrayed in figure 5 for
ASB(χ, t) at a numerically large value of δ/ε1/2. Here, as in § 4, χ is measured
relative to the equatorial local origin θl = 0. The grey shaded space–time contour plot
of Re{ASB(χ, t)} in figure 5(c) shows how the envelope wave tends to propagate
towards the equator as described towards the end of § 4.2. As explained above, the
Taylor vortices have a much shorter wavelength and so the space–time contours for
the actual vortices are closely packed and are inclined at a very shallow angle to the
t-axis. Thus the complicated temporal structure of ASB(χ, t) displayed in figure 5(c)
defines a smooth vortex distribution except at the dislocation half-way between the
pulse centres identified by the temporal merging of two ASB(χ, t) wave crests. Further
insight is to be gleaned from the envelope of |ASB(χ, t)| shown in figure 5(d) at some
fixed time t . The local maxima and minima are close to the midpoints χn(t) + L(t)/2
where the vortices disappear and it is here that the envelope has its maximum range
of oscillation. In contrast, the amplitude at the centre of a pulse hardly varies and
oscillates about a(0); these ideas are fully supported by the results in figures 2(d),
4(d) and 6(d). When, however, the outer sphere is at rest (δ = 1), the dislocation drifts
outwards over a distance comparable to that pulse width on the O(1) time scale (see
(4.19a) with χn(t) =O(ε−1/3)).

Bartels (1982) obtained numerical SP-solutions for spherical Taylor–Couette flow
by applying symmetry-preserving boundary conditions at the equator. His results
for the narrow gap case ε = 0.025, with the outer sphere at rest, show complicated
temporal behaviour that could be accounted for by our general description, albeit
within our SP-class. That means that its space–time features bear some resemblance
to figure 5(c) although modified so as to exhibit SP-characteristics such as those for
ASP(χ, t) with Ω = 0 illustrated in figure 3 in the almost co-rotating limit.

For the medium gap ε =0.154 Mamum & Tuckerman (1995) find subcritical finite-
amplitude SP-solutions. On increasing the Taylor number they are first manifested
as a pitchfork to steady states. In our small-ε narrow-gap limit, we find comparable
subcritical behaviour but to time-dependent solutions, which generally possess broken
symmetry. HBS found several different routes to travelling waves via various global
bifurcations and so it is hardly surprising to find that on increasing ε several
alternative scenarios are possible.

Sparsely distributed dislocations are apparent in non-axisymmetric vortices seen in
the numerical results of Dumas & Leonard (1994) for the narrow-gap limit. These are
just as our theory predicts albeit in the axisymmetric space–time context. Such modes
are spiral vortices also discussed by Nakabayashi (1983), Nakabayashi & Tsuchida
(1988a, b) and Sha & Nakabayashi (2001) but there in the medium-gap limit. Though
non-axisymmetric, they exhibit travelling wave features comparable to ours. In their
results wavy vortices are seen near the equator while, at higher latitudes, the vortices
spiral away from the equator in the negative longitudinal (azimuthal) direction. If
we tentatively identify the azimuthal coordinate with time, the spiral vortex states
found in the papers cited immediately above resemble a wave propagating towards
the equator as our waves under their pulse envelopes suggest.

Evidently the link with both laboratory and numerical experiments is somewhat
tenuous. The main difficulty faced is that we have identified behaviours on three
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different length and time scales. First, there is the short length scale εR1 and time
scale ε2R2

1/ν of the vortices. Second, there is modulation on the intermediate length
scale ε2/3R1 of the pulses for which the relevant time scale ε4/3R2

1/ν is inversely
proportional to the frequency increment between neighbouring pulses. This is the
space–time range over which our analysis is valid. Third, the pulses exist and are
spatially modulated on a relatively wide locally unstable region width O(ε1/3R1),
though this is still short compared to the O(R1) length associated with the distance
between the pole and the equator. The long time associated with temporal modulation
caused by pulse separation due to the group velocity is O(ε4/3R2

1/ν). We can only
speculate on the complicated spatio-temporal evolution over these longest scales. It
would be difficult to conduct experiments at a sufficiently small ε such that these
scale separations can be distinguished.

Though we have not proved that the pulse-trains persist on the longest time scales
we have shown how the basic pulse unit can support the existence of its neighbour.
Indeed the essential idea is that at every location there is a preferred frequency which
increases linearly with respect to distance from the equator. Moreover the initial
value calculation for spatially periodic solutions undertaken in § 3.1 was formulated
(see the factor exp(itx) in (3.1)) to accommodate that preference. Nevertheless the
realized temporally periodic forms to which the solution settles after the transients
decay possess the discrete set rather than a continuous distribution of frequencies.
Each pulse is localized in the vicinity of the point at which the frequency is preferred.
Furthermore, the constant frequency jump between neighbouring pulses is essential
for their mutual resonance. The fact that the pulse-train solutions emerge naturally
as the solution to an initial value problem suggests that they are robust. At the
outset of the current investigation it was far from clear whether pulse-trains were
even possible. Our demonstration of their existence provides an affirmative answer to
the long-outstanding question as to whether subcritical finite-amplitude solutions can
occur in the vicinity of the local critical Taylor number.
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the presentation of this work. Part of this study was conducted while A. P. B. was at
the School of Mathematics, University of New South Wales. He is indebted to the
Australian Research Council and the Royal Society whose support made this visit
possible. Further thanks are due to staff of the School (especially Peter Blennerhassett)
and to the staff and students of New College, UNSW for their hospitality.

Appendix A. The equivalence of the time and space Fourier series
representations

In order to establish the link between the Fourier time (2.23a) and space (3.8) series
representations, we take advantage of the property µn+4 = µn for all integer n and
write (3.8) in the alternative form

a(x, t) =

3∑
α=0

µα aα(x, t), (A 1a)

in which

aα(x, t) = exp(itx)
∑

∀n

Â(t + (4n + α)T ) exp(i(4n + α)T x). (A 1b)
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Our strategy is to consider each of the four Fourier space series aα(x, t) and to recast
them as Fourier time series. We then reassemble the sum (A 1a) as the Fourier time
series (2.23a).

For the particular case α = 0 the function

a0(x, t) =
∑

∀n

Â(t + 4nT ) exp(i(t + 4nT )x) (A 2a)

clearly has the property a0(x, t) = a0(x, t + 4T ) and so is periodic on the time 4T . It
follows that a0(x, t) can be represented as the Fourier sum

a0(x, t) =
∑
∀m

am(x) exp

(
im

L

2
t

)
, (A 2b)

for some functions am(x). Since exp(−itx)a0(x, t) as defined by (A 2a) is spatially
periodic on the length π/2T ≡ L/2, it has the symmetry property

exp(−itx) a0(x, t) = exp

[
−it

(
x +

L

2

)]
a0

(
x +

L

2
, t

)
. (A 3a)

Explicit substitution of the formula (A 2b) for a0 on both sides gives∑
∀m

am(x) exp

[
−i

(
x − m

L

2

)
t

]
=

∑
∀m

am

(
x +

L

2

)
exp

[
−i

(
x − (m − 1)

L

2

)
t

]
,

(A 3b)

which is satisfied when

am

(
x +

L

2

)
= am−1(x) (A 4a)

for all x and all integer m. This recurrence relation has the solution

am(x) =
1

2
√

2
a

(
x − m

L

2

)
, (A 4b)

where as yet a(x) remains an undetermined function and the factor 1/2
√

2 has been
introduced for convenience, see (A 7). Substitution of this result into (A 2b) determines
the Fourier time series

exp(−itx) a0(x, t) =
1

2
√

2

∑
∀m

exp

[
−i

(
x − m

L

2

)
t

]
a

(
x − m

L

2

)
. (A 5)

Since aα(x, t) = a0(x, t + αT ), it is readily established from (A 1b), (A 5) and noting
LT = π, that

exp(−itx) aα(x, t) =
1

2
√

2

∑
∀m

exp
(
imα

π

2

)
exp

[
−i

(
x − m

L

2

)
t

]
a

(
x − m

L

2

)
(A 6)

for each α. The substitution of (A 6) into (A 1a) and use of the identity

1

2
√

2

3∑
α=0

µα exp
(
inα

π

2

)
=


0, n even ,

eiπ/4, n = . . . , −3, 1, 5, . . . ,

e−iπ/4, n = . . . , −5, −1, 3, . . . ,

(A 7)

recovers the pulse-train structure (2.23a).
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Appendix B. The Fourier transform relationship (3.11a) of Â(t) to a(x)

To establish (3.11a) it is sufficient to consider the spatially periodic function
exp(−itx) a0(x, t) defined by (A 2a). We multiply it by exp(−4inT x) and integrate
over its periodicity length π/2T = L/2 to obtain the finite Fourier transform

Â(t + 4nT ) =
2

L

∫ L/4

−L/4

a0(x, t) exp[−i(t + 4nT )x]dx. (B 1a)

Since the expression (A 2a) has temporal period 4T , we substitute a0(x, t) =
a0(x, t + 4nT ) into (B 1a) and then make the change of variable t + 4nT → t .
In this way we deduce

Â(t) =
2

L

∫ L/4

−L/4

a0(x, t) exp(−itx) dx. (B 1b)

Finally, substitution of the formula (A 5) for a0(x, t) into (B 1b) yields

Â(t) =
1√
2L

∫ L/4

−L/4

∑
∀m

exp

[
−i

(
x − m

L

2

)
t

]
a

(
x − m

L

2

)
dx, (B 1c)

which, on reversing the order of integration and summation, gives (3.11a).

Appendix C. The relationship between the HBS problem and equation (4.9)
In order to prevent confusion between our notation here and that used by HBS,

all quantities appearing in HBS are designated by a tilde. With this convention,
equation (1.3) of HBS becomes

∂ã

∂t̃
= (λ̃ + 2iκ̃ x̃ − x̃2 − |ã|2)ã +

∂2ã

∂x̃2
, (C 1a)

which is retrieved from (4.9) upon making the transformations t = Υ −1
ε t̃ , χ =Υ −1/2

ε x̃,

λ=Υελ̃ and A = Υ 1/2
ε ã. Under this reduction the coefficient of the quadratic spatial

term χ2 in (4.9) becomes unity while the iχ term acquires the factor

2κ̃ ≡ Υ −3/2
ε ≈ 0.541 δ/ε1/2. (C 1b)

This is the dimensionless parameter used by HBS and, in a sense, plays a role in their
work similar to that of Υε here.

Whereas HBS used the representation (2.23) for symmetry-preserved solutions, they
effectively shifted their frequency by L/2 to describe symmetry-broken states, thereby
removing the halves in the expansion (2.23a). Accordingly, we translate the data listed
in HBS’s table 2 for the case κ̃ =4 (equivalently Υε =1/4) into our table 1 with the

scalings mentioned together with L = Υεω̃ and Ω = Υε(Ω̃ − ω̃/2).
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